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Abstract 
 

 

 

 

 

 

1 | Introduction  

The possibility of competition among the system controllers is called ''players,'' and the optimization problem 

under consideration is, therefore, termed a '' game''. Each player in the game controls a specified subset of 

the system parameters (called his/her control vector) and seeks to minimize his/her own scaler cost criterion 

subject to specified constraints. Game theory applications may be found in economics, engineering, biology, 

etc. Three major classes of games are: 

− Matrix games. 

− Continuous static games. 
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− Differential games. 

The three basic solution concepts for the games Vincent et al. [1] are: 

I. Nash equilibrium solutions. 

II. Min-max solutions. 

III. Pareto minimal solutions. 

In many scientific areas, such as system analysis and operator research, a model must be set up-using data, 

which is only approximately known. Fuzzy sets theory, introduced by Zadeh [2], makes this possible. Fuzzy 

numerical data can be represented by employing fuzzy subsets of the real line, known as fuzzy numbers. 

Dubois and Prade [3] extended the use of algebraic operations on real numbers to fuzzy numbers by the use 

of a fuzzification principle. Despite vast decision-making experience, the decision-maker cannot articulate the 

goals precisely. Decision-making in a fuzzy environment, developed by Bellman and Zadeh [4], improved and 

is a great help in managing decision problems. Zimmermann [5] proposed the fuzzy set theory and its 

applications.  

Orlovski [6] studied Multi-Objective Nonlinear Programming (MONLP) problems with fuzzy parameters. 

Osman and El-Banna [7] introduced the stability of fuzzy MONLP. Many pieces of research have been 

introduced in CCSGs Khalifa and Zeineldin [8]; Khalifa [9]; Donahue et al. [10]; Zhou et al.[11].  

In his earlier work, Osman [12] , [13] analyzed the notions of the solvability set, stability set of the first kind, 

and stability set of the second kind for parametric convex nonlinear programming.  

This paper introduces fuzzy Cooperative Continuous Static Games (CCSGs). The weighted Tchebycheff 

method is applied to obtain the optimal compromise solution.                

The remainder of the paper is organized as follows: Section 2 introduces some preliminaries needed in this 

paper. Section 3 formulated the mathematical model for the continuous cooperative static games. Section 4 

proposed a solution approach for obtaining an optimal compromise solution. Section 5 gives a numerical 

example for illustration. Finally, some concluding remarks are reported in section 6. 

2 | Preliminaries 

To discuss the problem easily, it recalls basic rules and findings related to fuzzy numbers, Piecewise Quadratic 

Fuzzy Numbers (PQFNs), close interval approximation, and its arithmetic operations. 

Definition 1 ([2]). Fuzzy number: a fuzzy number Ã is a fuzzy set with a membership function defined as 

πÃ(x):  ℜ → [0,1], and satisfies: 

I. Ã is fuzzy convex, i.e., πÃ(δ x + (1 − δ) y) ≥ min{πÃ(x), πÃ(y) };  for all x, y ∈  ℜ; 0 ≤ δ ≤ 1. 

II. Ã  is normal, i.e., ∃ x0 ∈ ℜ for which πÃ(x0) = 1. 

III. Supp (�̃�) = {x ∈ ℜ: 𝜋𝐴(x) > 0 } is the support of Ã. 

IV. πÃ(x) is an upper semi-continuous (i. e., for each α ∈ (0,1), the α-cut set Ãα = {x ∈ ℜ: πÃ ≥ α} is closed. 

Definition 2 ([14]). A PQFN is denoted by ÃPQ = (a1, a2, a3, a4, a5), where a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 are real 

numbers and is defined by if its membership function μãPQ is given by (Fig. 1). 
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Fig. 1. Graphical representation of a PQFN. 

 

Definition 3 ([14]). Let  ÃPQ = (a1, a2, a3, a4, a5) and B̃PQ = (b1, b2, b3, b4, b5) be two PQFNs. The arithmetic 

operations on ÃPQ and B̃PQ are: 

I. Addition: ÃPQ(+)B̃PQ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4, a5 + b5  ). 

II. Subtraction: ÃPQ(−)B̃PQ = (a1 + b5, a2 + b4, a3 + b3, a4 + b2, a5 + b1  ). 

III. Scalar multiplication: kÃPQ = {
(k a1, k a2, k a3, k a4, k a5), k > 0,

 (k a5, k a4, k a3, k a2, k a1), k < 0.
 

Definition 4 ([14]). An interval approximation [A] = [aα
−, aα

+] of a PQFN Ã is called closed interval 

approximation if: aα
− = inf{x ∈ ℝ: μÃ ≥ 0.5},  and aα

+ = sup{x ∈ ℝ: μÃ ≥ 0.5}. 

Definition 5 ([14]). Associated ordinary numbers [14]. If [A] = [aα
−, aα

+] is the close interval approximation 

of PQFN, the Associated ordinary number of [A] is defined as Â =
aα
−+ aα

+

2
. 

Definition 6 ([14]). Let [A] = [aα
−, aα

+], and [B] = [bα
−, bα

+] be two interval approximations of PQFN. Then, 

the arithmetic operations are 

I. Addition: [A](+)[B] = [aα
− + bα

−, aα
+ + bα

+]. 

II. Subtraction: [A](−)[B] = [aα
− − bα

+, aα
+ − bα

−]. 

III. Scalar multiplication: α [A] = {
[α aα

−,  α aα
+], α > 0,

[ α aα
+, α aα

−], α < 0.
 

IV. Multiplication: [A](×)[B]=[
aα 
+ bα

−+aα
− bα

+

2
,
aα 
− bα

−+aα
+ bα

+

2
  ]. 

μÃPQ =

{
 
 
 
 
 
 

 
 
 
 
 
 

     
0, x < a1,

1

2

1

(a2 − a1)
2
(x − a1)

2, a1 ≤ x ≤ a2,

1

2

1

(a3 − a2)
2
(x − a3)

2 + 1, a2 ≤ x ≤ a3,

1

2

1

(a4 − a3)
2
(x − a3)

2 + 1, a3 ≤ x ≤ a4,

1

2

1

(a5 − a4)
2
(x − a5)

2, a4 ≤ x ≤ a5,
     

0, x > a5.
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V. Division: [A](÷)[B]={
 [2 (

aα
−

bα
−+bα

+) , 2 (
aα
+

bα
−+bα

+)] , [B] > 0, bα
− + bα

+ ≠ 0,

[2 (
aα
+

bα
−+bα

+) , 2 (
aα
−

bα
−+bα

+)] , [B] < 0, bα
− + bα

+ ≠ 0.
  

VI. The order relations: 

− [𝐴](≲)[𝐵] if  𝑎𝛼
− ≤ 𝑏𝛼

− and 𝑎𝛼
+ ≤ 𝑏𝛼

+ or 𝑎𝛼
− + 𝑎𝛼

+ ≤ 𝑏𝛼
− + 𝑏𝛼

+. 

− [𝐴] is preferred to [𝐵] if and only if 𝑎𝛼
− ≥ 𝑏𝛼

−, 𝑎𝛼
+ ≥ 𝑏𝛼

+. 

It is noted that P(ℝ) ⊂ F(ℝ)t, where F(ℝ), and P(ℝ) are the sets of all PQFNs and close in interval 

approximation of PQFN, respectively. 

3 | Problem Formulation and Solution Concepts 

Consider the following Fuzzy Cooperative Continuous Static Games (F-CCSG) with n-players having 

piecewise quadratic fuzzy parameters in the cost functions of the players. These players respectively have the 

costs. 

F- CCSG 

Where, Gi(b, ξ, ãi), ji = 1,m are convex functions on ℜn × ℜs, hl(b, ξ), l = 1, r are concave functions on 

ℜn × ℜs, gj(b, ξ), j = 1, n are convex functions on ℜn × ℜsAssume that there exists a function b = f(ξ). If the 

function gj(b, ξ) = 0, j = 1, n are differentiable than the Jacobian |
∂gj(b,ξ)

∂bq
| ≠ 0, j; q = 1, n in the neighborhood 

of a solution point (b, ξ) to Eq. (2), b = f(ξ) is the solution to Eq. (2) generated by ξ ∈ Ω; differentiability 

assumptions are not needed here for all the functions Gi(b, γ, ãi), i = 1, n  and  hl(b, ξ), Ω is a regular and 

compact set. ãi, i = 1,m, represents a vector of PQFNs Jain [14]. Let ã1, ã2, … , ãm; 

 μã1(a1), μã2(a2)… , μãm(am) be the PQFNs in the F-CCSG problem with convex membership functions, 

respectively. 

For a certain degree of α, the F-CCSG problem can be rewritten in the following fuzzy form Sakawa and 

Yano [15], [16]: 

𝛂- CCSG 

Definition 7 ([1]). Let b = f(ξ) be the solution to Eq. (5) generated by ξ ∈ Ω. A point 𝜉∗ ∈ Ω is called an α-

Pareto optimal solution to the α-CCSG problem, if and only if there does not exist (ξ, a) ∈  Ω × Lα(ãi) such 

that: 

Gi(f(ξ), ξ, ai) ≤ Gi(f(ξ
∗), ξ∗,  ai

∗);  for all i = 1,m and Gi(f(ξ), ξ, ai) < Gi(f(ξ), ξ
∗,  ai

∗) for some i ∈ {1, 2, … ,m}, 

where ai
∗ are called α-level minimal parameters. 

G1(b, , ξ,  ã1), G2(b, ξ, ã1),… , Gm(b, ξ, ãm), 

s.t. 
(1) 

gj(b, ξ) = 0, j = 1, n, (2) 

ξ ∈ Ω = {ξ ∈ ℜs: hl(b, ξ) ≥ 0, l = 1, r}. (3) 

G1(b, ξ, a1), G2(b, ξ, a2), … , Gn(b, γ, am),  

s.t. 
(4) 

gj(b, ξ) = 0, j = 1, 2, … , n, (5) 

Ω = {ξ ∈ ℜs: hl(b, ξ) ≥ 0, l = 1, r}, (6) 

ai ∈ Lα(ãi), i = 1,m. (7) 
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From the α-Pareto optimal solution to the α-CCSG problem concept, one can show that a point ξ∗ ∈ Ω is an  

α-Pareto minimal solution to the α-CCSG problem if and only if  ξ∗is an α-Pareto minimal solution to the 

following α-multi-objective optimization problem  

α- MOP 

Where, Gi(ξ, ai), i = 1,m  are convex functions on ℜ𝑛 ×ℜ𝑡 and hl(ξ), l = 1, 2, … , r are concave functions 

on ℜs and Gi(ξ, ai) = Gi(f(ξ), ξ, ai), hl(ξ) = hl(f(ξ), ξ). Assume that the α-MOP is to be stable Rockafellar [17]. 

Problem Eq. (8) will be solved by the weighting Tchebycheff problem 

or 

Where, wi ≥, i = 1,m, and Gi( ξ
∗,  ai

∗), i = 1,m are the ideal targets. It is noted that the stability of α- MOP  

implies the stability of the Eq. (10).          

4 | Solution Procedure 

The solution method is based on determining the α-best compromise solution within the close interval 

approximation of PQFNs and the minimum deviation from the Gi( ξ
∗,  ai

∗), where 

Step 1. Calculate  Gi
min
, and Gi

max
( i.e., individual minimum and maximum) at α = 0 and α = 1, respectively. 

Step 2. Compute the weight from the relation 

Step 3. Formulate and solve the following problem: 

Where, Wi ≥ 0, i = 1,m,  ∑ wi = 1
m
i=1 , [(a1i)α

−, (a2i)α
+] = Lα(ãi), i = 1,m. 

Let ( ξ°,  ai
°) be the α- optimal compromise solution. 

Step 4. Determine the stability set of the first kind S( ξ°,  ai
°). 

min (G1(ξ, a1), G2(ξ, a2), … , Gm(ξ, am))
T
, 

s.t. 
(8) 

Ω = {ξ ∈ ℜs: hl(b, ξ) ≥ 0, l = 1, r}, 

ai ∈ Lα(ãi), i = 1,m. 

 

min
 ξ∈Ωai∈Lα(ãi)

max
1≤i≤m

{wi (Gi(ξ, ai) − Gi( ξ
∗,  ai

∗)) , ai ∈ Lα(ãi), i = 1,m }, (9) 

min {λ:wi (Gi(ξ, ai) − Gi( ξ
∗,  ai

∗)) ≤ λ, ξ ∈ Ω, ai ∈ Lα(ãi), i = 1,m }. (10) 

Gi( ξ
∗,  ai

∗) = min
ξ∈Ω,ai∈Lα(ãi) 

Gi(ξ, ai), i = 1,m.  

wi =
Gi
max

− Gi
min

∑ (Gi
max

− Gi
min

)m
i=1

,  

min λ, 

s.t. 
(11) 

Wi (Gi(ξ, ai) − Gi( ξ
∗,  ai

∗)) ≤ λ, i = 1,m, 

ξ ∈ Ω, ai = [(𝑎𝑖)𝛼
−, (𝑎𝑖)𝛼

+], i = 1,m. 
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Let d = (d1,  d2) ∈ ℜ
2m, where d1 = (d11, … ,  dim)

T, d2 = (d21, … ,  d2m)
T. Suppose that Eq. (11) is solvable for 

( w°, d°) ∈ ℜ3m with a corresponding α-Pareto optimal solution ( ξ°,  ai
°) be given. S( ξ°,  ai

°) is determined by 

applying the following conditions: 

5 

| 

Example    

Consider the following two-player game with 

Where player 1 controls ξ1 ∈ ℜ,  and player 2 controls ξ2 ∈ ℜ with  

Let ã1 = (1, 2, 3, 4, 5, ) and ã1 = (1, 3, 5, 9, 10) with the close interval approximation are [(ã1)α] = [2, 4] and 

[(ã2)α] = [3, 9].  

Step 1. Solve 

Let (ξ1, ξ2, 𝑎1 = 1) = (1, 1, 1) with G1
min

= 0. 

Solve   

Let (ξ1, ξ2, a2 = 1 ) = (1, 2, 1) with G2
min

= 0. 

Solve 

Solve 

Let (ξ1, ξ2, a2 = 5 ) = (4, 0, 5) with G2
max

= 29. 

ζi
°( ai

° − d2i) = 0, i = 1,m, 

ηi
°(d1i −  ai

°) = 0, i = 1,m, 

ζi
°, ηi

° ≥ 0, d1i, d2i ∈ ℜ, [(a1i)α
−, (a2i)α

+] = Lα(ãi), i = 1,m.  

 

G1(ξ, ã1) = (ξ1 − ã1)
2 + (ξ2 − 1)

2 

G2(ξ, ã2) = (ξ1 − 1)
2 + ã2(ξ2 − 2)

2 
 

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0.  

min(ξ1 − 1)
2 + (ξ2 − 1)

2, 

s.t. 
 

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0,

 μã1(a1) = 0, μã2(a2) = 0. 
 

min(ξ1 − 1)
2 + 10(ξ2 − 2)

2, 

s.t. 
 

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0,  

μã1(a1) = 0, μã2(a2) = 0. 
 

max(ξ1 − 3)
2 + (ξ2 − 1)

2, 

s.t. 
 

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0,  

 μã1(a1) = 1, μã2(a2) = 1. 
 

max(ξ1 − 1)
2 + 5(ξ2 − 2)

2, 

s.t. 
 

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0,  

μã1(a1) = 1, μã2(a2) = 1. 
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Step 2. w1 =
G1
max

−G1
min

(G1
max

−G1
min

)+(G2
max

−G2
min

)
= 0.383 and w2 =

G2
max

−G2
min

(G1
max

−G1
min

)+(G2
max

−G2
min

)
= 0.617. 

Step 3. Solve 

Yields, ξ1
° = 1.440665, ξ2

° = 1, a1
° = 2, a2

° = 3  and λ° = 0.1198169. 

Step 4. Determine S (1.440665, 1, 2, 3) by applying the following conditions: 

We have J1k; J2k ⊆ {1, 2}, for J11 = {1}, ζ1
° , > 0 ζ2

° = 0. 

For J21 = {2}, η1
° = 0, η2

° = 0, then 

For J12 = {2}, ζ1
° = 0, ζ2

° > 0. For J22 = {1}, η1
° > 0, η2

° = 0, then 

For  J13 = {1,2}, ζ1
° > 0, ζ2

° > 0. For J23 = ∅, η1
° = 0, η2

° = 0, then 

For  J14 = ∅, ζ1
° = 0, ζ2

° = 0. For J24 = {1, 2}, η1
° > 0, η2

° > 0, then 

Hence, 

 Min λ, 
s.t. 

 

(ξ1 − 𝑎1)
2 + (ξ2 − 1)

2 −
47

18
λ ≤ 0, 

(ξ1 − 1)
2 + 𝑎2(ξ2 − 2)

2 −
47

29
 λ ≤ 0, 

2 ≤ 𝑎1 ≤ 4,= [2, 4], and 3 ≤ a2 ≤ 9,  

𝜉1 − 4 ≤ 0, 𝜉2 − 4 ≤ 0,−𝜉1 ≤ 0,−𝜉2 ≤ 0, 

 

ζ1
° (2 − d21) = 0, ζ2

° (3 − d22) = 0,  

η1
° (d11 − 2) = 0,   η2

° (3 − d12) = 0, 

 ζ1
° , ζ2

° ;  η1
° , η2

° ≥ 0, [c1i, c2i] = Lα(ãi), i = 1, 2. 

 

S J11,J21(1.440665, 1, 2, 3) =

{
 
 

 
 
(d1,  d2) ∈ ℜ

4:
d21 = 2,
d22 ≥ 3,
 d11 ≤ 2,
d12 = 3, }

 
 

 
 

.  

S J12,J22(1.440665, 1, 2, 3) =

{
 
 

 
 
(d1,  d2) ∈ ℜ

4:
d21 ≥ 2,
d22 = 3,
 d11 = 2,
d12 ≤ 3, }

 
 

 
 

.  

S J13,J23(1.440665, 1, 2, 3) =

{
 
 

 
 
(d1,  d2) ∈ ℜ

4:
d21 = 2,
d22 = 3,
 d11 ≤ 2,
d12 ≤ 3, }

 
 

 
 

.  

S J14,J24(1.440665, 1, 2, 3) =

{
 
 

 
 
(d1,  d2) ∈ ℜ

4:
d21 ≥ 2,
d22 ≥ 3,
 d11 = 2,
d12 = 3, }

 
 

 
 

.  
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6 | Conclusions 

This paper studies CCSG with PQFNs. The weighted Tchebycheff method has been applied to obtain the α-

optimal compromise solution; hence, the stability set of the first kind corresponding to the obtained solution 

has been determined. The advantage of the approach is that it enables the decision-maker to have a 

satisfactory solution. 
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